B. Després (LJLL-SU) M. Pintore (Post-doc AeX-Inria and PEPR-IA)

Lipschitz stability of Deep Neural Networks in view of applications

B. Després (LJLL-SU) M. Pintore (Post-doc AeX-Inria and PEPR-IA)

Dataset

Introduction

Lipschitz stability Extension to

• Take a large enough dataset :
$$\mathcal{D} = \{(x_i, y_i), i = 1, ...\} \subset \mathbb{R}^m \times \mathbb{R}^n$$

Postulate : dataset corresponds to unknown objective/transfer function

$$H:\mathbb{R}^m\longrightarrow\mathbb{R}^n$$

with $x_i \in \mathbb{R}^m$, $y_i = H(x_i) + \varepsilon_i \in \mathbb{R}^n$, and noise $\varepsilon_i \in \mathbb{R}^n$.

Least square representation with recursivity

- Introduction
- Take a linear function f with weight $W \in \mathcal{M}_{mn}(\mathbb{R})$ and bias $b \in \mathbb{R}^n$

- Lipschitz stability
- Extension to CNN

$$\begin{aligned} f: & \mathbb{R}^m & \longrightarrow \mathbb{R}^n, \\ & x & \longmapsto f(x) = Wx + b. \end{aligned}$$
 (1)

• Notations $a_0 = m$ is the input layer $a_{p+1} = n$ is the output layer $(a_1, a_2, \dots, a_p) \in \mathbb{N}^p$ are the (dense) hidden layers with neurons

• Consider

$$\begin{array}{ccc} \mathcal{E}_r : & \mathbb{R}^{a_r} & \longrightarrow \mathbb{R}^{a_{r+1}}, \\ & X_r & \longmapsto f_r(X_r) = W_r X_r + b_r \end{array}$$

and the function $f = f_p \circ f_{p-1} \dots f_2 \circ f_1 \circ f_0$.

1

Add non linearity

Introduction

Lipschitz stability

Extension to CNN Non linearity is added with an activation function.
Sigmoid ∈ C¹(ℝ). A sigmoid σ is monotone, 0 < σ' < 1, with limit value 0 at -∞ and limit value 1 at +∞.

ReLU $\in C^0(\mathbb{R})$. It is defined by $R(x) = \max(0, x)$. Thresholding yields $T(x) = \min(R(x), 1)$.

Generalization component wise to activation functions $\mathbb{R}^q \to \mathbb{R}^q$.

A function *f* defined through a generic **feed-forward neural network** is :

 $f = f_{p+1} \circ S_{p+1} \circ f_p \circ \cdots \circ f_1 \circ S_1 \circ f_0$, where activation function is $S_r = \sigma$ or R.

Fit the coefficients with numerical optimisation

Introduction

Lipschitz stability

Extension to CNN Lingo : deep learning=p large, training=numerical optimisation, Machine Learning= optimization, epoch=global iteration, batches=data for local iterations, neural networks=special non linear functions, regression=Least square, ...

• Consider the cost function

$$J(W, b) = \frac{1}{\operatorname{card}\mathcal{D}} \sum_{(x,y)\in\mathcal{D}} |f(x) - y|^2$$

An optimal value satisfies

$$J(W_*, b_*) \leq J(W, b) \qquad \forall (W, b).$$

The training=minimization session on the computer with ad-hoc stochastic gradient algorithms can extremely difficult since the cost function J is highly non convex for $p \ge 2$

• Important variation for classification with CNNs. Let y and p(z) be discrete probabilities : $y_i \in [0, 1]$, $\sum y_j = 1$; $p_i = \frac{\exp z_i}{\sum_{j=1}^n \exp z_j} \in (0, 1)$. Consider the Kullback-Leibler divergence (which is convex)

$$J(W,b) = -\sum_{(x,y)\in\mathcal{D}} (\log p(f(x)), y) \ge 0.$$

What is the stability of the result?

Introduction

- Lipschitz stability
- Extension to CNN

- Biggio et al : 2013
- Example from Franceshi et al : 2021.

red panda (unperturbed)

ir p

polecat

- Madry et al : Towards deep learning models resistant to adversarial attacks, in 6th International Conference on Learning Representations, 2018.

- Nota Bene : l^1 norm probably better to analyze tables of pixels \approx images.

A question is :

Introduction

Lipschitz stability

Extension to CNN Can we certify with SciML= Scientific Machine Learning these functions/techniques/algorithms/..., with critical applications in mind?

The emerging discipline needs much more on **mathematical stability** of NN functions.

Related ML key words : predictibility, robust IA, control of generalization error, reproductibility, adversarial networks, explainibility, \ldots

Model problem

Introduction

Lipschitz stability

Extension to CNN

• Assume that f is produce by ML. Consider the dynamical system

 $\begin{cases} x'(t) = f(x(t)), \\ x(0) = x_0 \end{cases}$

What can we say about the stability of solutions of the ODE?

• Our model problem is then to : → Evaluate the Lipschitz constant *L*

$$|f(x) - f(y)| \le L|x - y|, \qquad \forall x, y \in \mathbb{R}^n.$$

Setting of the problem

Introduction

• Take
$$f : \mathbb{R}^{a_0} \to \mathbb{R}^{a_\ell + 1}$$

Extension to CNN

$$f = f_{\ell} \circ S_{\ell} \circ f_{\ell-1} \circ S_{\ell-1} \circ \cdots \circ S_1 \circ f_0$$

The regularity is

$$f \in \operatorname{Lip}(\mathbb{R}^{a_0})^{a_{\ell+1}} \subset C^0(\mathbb{R}^{a_0})^{a_{\ell+1}}.$$

Rademacher's Theorem : the gradient is

$$\nabla f(x) = W_\ell D_\ell(x) W_{\ell-1} D_{\ell-1}(x) \dots D_1(x) W_0.$$

A subtlety : use the Murat-Trombetti Theorem (2003) to write down the chain rule formula.

• Take a vectorial norm, for example $||x||_{I^p(\mathbb{R}^a)} = (\sum_{i=1}^a |x_i|^p)^{1/p}$. The induced norm for matrices is $M \in \mathcal{M}_{ab}(\mathbb{R}) = \mathbb{R}^{a \times b}$ is

$$\|M\| = \|M\|_{l^{p}(\mathcal{M}_{ab}(\mathbb{R}))} = \max_{x \neq 0} \frac{\|Mx\|_{l^{p}(\mathbb{R}^{a})}}{\|x\|_{l^{p}(\mathbb{R}^{b})}}.$$
 (2)

 \bullet Our goal is to obtain sharp upper bounds on

$$L = \sup_{x \in \mathbb{R}^{a_0}} \left\| \nabla f(x) \right\|_{l^p(\mathcal{M}_{a_{\ell+1},a_0}(\mathbb{R}))} = \left(\left\| \nabla f \right\|_{l^p(\mathcal{M}_{a_{\ell+1},a_0}(\mathbb{R}))} \right)_{L^{\infty}(\mathbb{R}^{a_0})}.$$

Introduction

- Everywhere. One has $L \leq K_*$ where $K_* = \prod_{r=0}^{\ell} \|W_r\|$.
- Szegedy et al (2013). On has $L \leq K \leq K_{\star}$ where

$$\mathcal{K} = \max_{D \in \mathcal{D}} \| W_{\ell} D_{\ell} W_{\ell-1} D_{\ell-1} \dots D_1 W_0 \|,$$

Note immediately the complexity $2^{a_0+a_1+\dots+a_\ell} = \prod_{r=0}^\ell 2^{a_r}$.

- Virmaux-Scaman (2019). Find upper bound on *K* with SVD decomposition. The complexity reduces to $\sum_{r=0}^{\ell} 2^{a_r}$.
- Combettes-Pesquet (2020). Define $W_{(t,s)} = W_{t-1}W_{t-2}\dots W_{s+1}W_s$. Then $K \le K_1 \le K_*$ where

$$K_{1} = \frac{1}{2^{\ell}} \sum_{1 \leq r_{1} < r_{2} < \cdots < r_{n} \leq \ell} \| W_{(\ell+1,r_{n})} \| \| W_{(r_{n},r_{n-1})} \| \dots \| W_{(r_{2},r_{1})} \| \| W_{(r_{1},0)} \|.$$

The complexity is $2^{\ell} \ll \sum_{r=0}^{\ell} 2^{a_r} \ll \prod_{r=0}^{\ell} 2^{a_r}$.

Simple proof of C.P.

Introduction

Lipschitz stability

Extension to CNN

Define
$$Z_r = 2D_r - I_r = \text{diag}(\pm 1)$$
 so that $D_r = \frac{1}{2}(I_r + Z_r)$.
Define $Z_r = \{Z_r\}$ and $Z = Z_\ell \times \cdots \times Z_1$.

$$\begin{split} & \mathcal{K} = \max_{D \in \mathcal{D}} \left\| W_{\ell} D_{\ell} W_{\ell-1} D_{\ell-1} \dots D_{1} W_{0} \right\| \\ & = \max_{Z \in \mathcal{Z}} \left\| W_{\ell} \left(\frac{1}{2} (I_{\ell} + Z_{\ell}) \right) W_{\ell-1} \left(\frac{1}{2} (I_{\ell-1} + Z_{\ell-1}) \right) \dots \left(\frac{1}{2} (I_{1} + Z_{1}) \right) W_{0} \right\| \\ & \leq \frac{1}{2^{\ell}} \max_{Z \in \mathcal{Z}} \sum_{1 \leq r_{1} < r_{2} < \dots < r_{n} \leq \ell} \left\| W_{(\ell+1,r_{n})} Z_{r_{n}} W_{(r_{n},r_{n-1})} \dots W_{(r_{2},r_{1})} Z_{r_{1}} W_{(r_{1},0)} \right\| \\ & \leq \frac{1}{2^{\ell}} \max_{Z \in \mathcal{Z}} \sum_{1 \leq r_{1} < r_{2} < \dots < r_{n} \leq \ell} \left\| W_{(\ell+1,r_{n})} \right\| \left\| Z_{r_{n}} \right\| \left\| W_{(r_{n},r_{n-1})} \right\| \dots \left\| W_{(r_{2},r_{1})} \right\| \left\| Z_{r_{1}} \right\| \left\| W_{(r_{1},0)} \right\| \\ & \leq \frac{1}{2^{\ell}} \sum_{1 \leq r_{1} < r_{2} < \dots < r_{n} \leq \ell} \left\| W_{(\ell+1,r_{n})} \right\| \left\| W_{(r_{n},r_{n-1})} \right\| \dots \left\| W_{(r_{2},r_{1})} \right\| \left\| W_{(r_{1},0)} \right\| \\ & = \mathcal{K}_{1} \leq \mathcal{K}_{\star}. \end{split}$$

"Trivially", one also $K \leq K_{\star}$.

A first new bound

Introduction

Lipschitz stability

Extension to CNN

It is well known that
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |A_{ij}|$$
 and $||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |A_{ij}|$.

Definition

Given a matrix $A \in \mathcal{M}_{m,n}(\mathbb{R})$, denote $A^{abs} \in \mathcal{M}_{m,n}(\mathbb{R})$ the matrix such that

$$(A^{\mathrm{abs}})_{ij} = |A_{ij}|, \quad \forall i, j.$$

One obtains $||A||_1 = ||A^{abs}||_1$ and $||A||_{\infty} = ||A^{abs}||_{\infty}$ (not true for l^2 -based norms).

Theorem

One has the bound $K \leq K_3$ where

$$\mathcal{K}_3 = \big\| \, W^{\rm abs}_\ell \, W^{\rm abs}_{\ell-1} \, \dots \, W^{\rm abs}_0 \big\|_{1,\infty}.$$

A second new bound

Introduction

Lipschitz stability

Extension to CNN

Combine with the Combettes-Pesquet trick

$$K_4 = \frac{1}{2^{\ell}} \sum_{1 \le r_1 < r_2 < \dots < r_n \le \ell} \| W^{\text{abs}}_{(\ell+1,r_n)} \dots W^{\text{abs}}_{(r_2,r_1)} W^{\text{abs}}_{(r_1,0)} \|_{1,\infty}.$$

Theorem

One has the bounds $K \leq K_4 \leq K_1$.

Summary of these bounds

Introduction

Lipschitz stability

Extension to CNN

Here we use I^1 and I^∞ norms

 $L \leq K \leq K_4 \leq \min(K_1, K_3) \leq \max(K_1, K_3) \leq K_{\star}.$

Approximation of x^2

Introduction

Lipschitz stability

$$g(x) = \begin{cases} 2x, & x \in [0,0.5) \\ 2(1-x), & x \in [0.5,1] \end{cases}, \quad g_r(x) = \underbrace{g \circ g \circ \cdots \circ g \circ g}_{r \text{ times}}.$$

Extension to CNN

Converging series : Takagi (1902), Yarostky (2017), Devore et al, D., ...

$$x^2 = x - \sum_{r=0}^{\infty} \frac{g_r(x)}{4^r}.$$

Illustration : $x \mapsto x - x^2$

Extension to

Clearly $\|x^2 - (x - \sum_{r=1}^{p} \frac{1}{4^r} g_r(x))\|_{L^{\infty}(0,1)} \le \sum_{p+1 \le n} \frac{1}{4^r} = \frac{1}{3 \times 4^p}$. Width N = 3, depth p: accuracy is $\varepsilon = O(4^{-p})$, for a cost Cost = $O(3 \times p) \approx C |\log \varepsilon|$.

Theorem (Yarostky 2017)

There exists a NN approximating all bounded functions $\in W^{n,\infty}([0,1]^d)$ with uniform accuracy ε , uniform cost $\approx \log 1/\varepsilon$ and at most $\approx \varepsilon^{-d/n} \log 1/\varepsilon$ computational units.

Results and optimality of K_4

1011 10⁹ Kworst Kworst K_{CP} K_{CP} 10⁹ 107 KseaLip KseqLip spunog K_{abs} Bounds 107 K_{abs} K_{absCP} KabsCP 10⁵ 10³ 10³ 10¹ 10¹ 10 Ż 8 10 Ż 4 6 8 4 6 Layers Layers

Bounds depending on the ReLU representation of g.

ℓ	L	<i>K</i> *	K_1	K ₂	<i>K</i> ₃	K_4
1	1.5	3.0	2.0	1.5	2.0	1.5
2	1.75	9.0	3.53125	3.64531	3.0	1.75
3	1.875	33.0	6.92187	6.45925	4.0	1.875
4	1.93875	129.0	14.42877	12.45882	5.0	1.93875
5	1.96875	513.0	30.75637	24.68184	6.0	1.96875
6	1.984375	2049.0	66.00227	49.24501	7.0	1.984375

maoutton

Lipschitz stability

Extension to CNN

A test for T(x, y) = xy

Introduction

Lipschitz stability

Extension to CNN A new formula with strong connexion with FEM : consider the function

$$\Lambda = (\Lambda_1, \Lambda_2) : \mathbb{R}^2 \to \mathbb{R}^2$$

Formula

Introduction

Lipschitz stability

Extension to CNN

One can check the formula where $e_0 \in P_{\text{FEM}}^1$

$$T = e_0 + \frac{1}{4}T \circ \Lambda \Longrightarrow T = \sum_{n \ge 0} \frac{1}{4^n} e_0 \circ \underbrace{\Lambda \circ \cdots \circ \Lambda}_{n \text{ times}}$$

It reveals the power of composition.

Results

Introduction

Lipschitz stability

Extension to CNN Lipschitz bounds for networks approximating the function xy.

Remark : the formula is an alternative to the multiplyer function in the influental contribution Yarotsky 2017.

Matrices with random weights (from C.P.)

Introduction

Lipschitz stability

Extension to CNN Take $W_3 \in \mathcal{M}_{3,6}(\mathbb{R})$, $W_2 \in \mathcal{M}_{6,10}(\mathbb{R})$ and $W_1 \in \mathcal{M}_{10,8}(\mathbb{R})$. Their entries are i.i.d. realizations of the normal distribution $\mathcal{N}(0,1)$.

 $f = f_3 \circ R \circ f_2 \circ R \circ f_1, \qquad R = \text{ReLU}.$

Statistic	K/K_*	K_1/K_*	K_2/K_*	K_3/K_*	K_4/K_*
Maximum	0.2772	0.5786	0.6789	0.8023	0.4608
Average	0.1422	0.4539	0.3256	0.5461	0.2875
Minimum	0.0595	0.3703	0.1597	0.2897	0.1604
Standard deviation	0.0343	0.0350	0.0685	0.0813	0.0483

Statistics over 1000 realizations.

Once again, K_4 is the best one.

Convolutional neural networks

CNN

$$g = T_{\ell+1} \circ g_{\ell} \circ T_{\ell} \circ g_{\ell-1} \circ T_{\ell-1} \circ \cdots \circ T_1 \circ g_0.$$

For simplification we neutralize the last soft-max function $T_{\ell+1} = I$.

$$g = g_{\ell} \circ T_{\ell} \circ g_{\ell-1} \circ T_{\ell-1} \circ \cdots \circ T_1 \circ g_0.$$

Normalization is that g_r have ability to change the dimension and that the T_r do not change the dimension.

As before, a linear function $g_i^{\text{lin}} : \mathbb{R}^{a_i} \to \mathbb{R}^{a_{i+1}}$ is written

$$g_i^{\rm lin}(x)=W_ix+b_i.$$

Convolutional layers

Introduction

• A convolutional layer $g_i^{\text{con}} : \mathbb{R}^{a_i} \to \mathbb{R}^{a_{i+1}}$

Lipschitz stability

 $g_i^{\text{conv}}(x) = K_i^{\text{conv}} * \overline{x} + \overline{b}_i.$

Extension to CNN

Since convolution operators are linear operators, there exist a matrix $W_i = W_i^{\text{conv}}$ such that

$$g_i^{\rm conv}(x) = W_i x + b_i,$$

Example : take a vertical vector

$$x = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33} \end{bmatrix}^T \in \mathbb{R}^9.$$
(3)

A re-indexation allows to write

$$\overline{x} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$$
(4)

• The normalization convention allows to represent the non-linear **max-pool function** as a *g_i*

$$g_i(x) = (\max(x_{11}, x_{12}, x_{21}, x_{22}), \dots) \in \mathbb{R}^4.$$

Regularity of CNNs

Introduction

Lipschitz stability

Extension to CNN

$$g \in \operatorname{Lip}(\mathbb{R}^{a_0})^{a_{\ell+1}} \subset C^0(\mathbb{R}^{a_0})^{a_{\ell+1}}.$$

All previous results are generalized mutatis mutandi.

A test with CNN (MNIST, LeCun et al)

Introduction

Lipschitz stability

Extension to Training with regularization (0.01). CNN The accuracy on the test set is always between 95% and 97%.

Model	Approach	l ¹				l^{∞}			
Model		K_*	K_1	K_3	K_4	K_*	K_1	K_3	K_4
Model A	Explicit	1.058e5	1.107e4	9.377e3	2.222e3	1.565e6	1.734e5	2.993e5	4.756e4
	Implicit	1.562e2	4.721e1	5.191e1	2.739e1	3.678e3	9.021e2	1.859e3	6.424e2
Model B	Explicit	1.712e7	7.353e5	1.599e5	3.626e4	2.878e7	3.171e6	4.590e6	6.804e5
	Implicit	4.280e2	1.423e2	1.772e2	1.016e2	1.151e4	2.823e3	6.203e3	$\mathbf{2.294e3}$
Model C	Explicit	4.950e8	1.910e7	3.120e6	7.327e5	8.241e8	7.749e7	9.068e7	1.170e7
	Implicit	7.735e2	2.337e2	1.853e2	1.230e2	2.060e4	4.570e3	6.574e3	2.307e3

Once again, K_4 is the best one.

Conclusion

Introduction

Lipschitz stability

Extension to CNN

- Stability of NNs is a fundamental topic, at least for the development of SciML and potential applications to certification.
- Linear algebra has something to say about the Lipschitz stability of NNs. So far K₄ is systematically the best estimate.
- **Open question 1** : find better bounds through spectral analysis.
- **Open question 2 :** use such bounds to regularize training.
- **Open question 3 :** use such bounds for applications such as "learning real problems" and "solving PDEs".

D.-Pintore : Certified computable Lipschitz bounds for Deep Neural Networks.