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Dataset

● Take a large enough dataset : D = {(xi , yi), i = 1, . . .} ⊂ Rm ×Rn

(yi)

f obj

(xi)

Postulate : dataset corresponds to unknown objective/transfer function

H ∶ Rm Ð→ Rn

with xi ∈ Rm, yi = H(xi) + εi ∈ Rn, and noise εi ∈ Rn.
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Least square representation with recursivity

● Take a linear function f with weight W ∈ Mmn(R) and bias b ∈ Rn

f ∶ Rm Ð→ Rn,
x z→ f (x) =Wx + b.

(1)

● Notations
a0 = m is the input layer
ap+1 = n is the output layer
(a1, a2, . . . , ap) ∈ Np are the (dense) hidden layers with neurons

● Consider
fr ∶ Rar Ð→ Rar+1 ,

Xr z→ fr(Xr) =WrXr + br

and the function f = fp ○ fp−1 . . . f2 ○ f1 ○ f0.

Depth p is the number of layers.
Width N = maxr ar is the maximal number of neurons per layer.

2024 p. 3 / 26



Introduction

Lipschitz
stability

Extension to
CNN

Add non linearity

● Non linearity is added with an activation function.

Sigmoid ∈ C 1(R). A sigmoid σ is monotone, 0 < σ′ < 1,
with limit value 0 at −∞ and limit value 1 at +∞.

ReLU ∈ C 0(R). It is defined by R(x) = max(0, x).
Thresholding yields T(x) = min(R(x),1).

Generalization component wise to activation functions Rq → Rq.

R

S = σ

T

A function f defined through a generic feed-forward neural network is :

f = fp+1 ○Sp+1 ○ fp ○ ⋅ ⋅ ⋅ ○ f1 ○S1 ○ f0, where activation function is Sr = σ or R.
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Fit the coefficients with numerical optimisation

Lingo : deep learning=p large, training=numerical optimisation, Machine
Learning= optimization, epoch=global iteration, batches=data for local
iterations, neural networks=special non linear functions, regression=Least
square, . . .

● Consider the cost function

J(W ,b) = 1

cardD ∑
(x,y)∈D

∣f (x) − y ∣2

An optimal value satisfies

J(W∗,b∗) ≤ J(W ,b) ∀(W ,b).
The training=minimization session on the computer with ad-hoc stochastic
gradient algorithms can extremely difficult since the cost function J is
highly non convex for p ≥ 2

● Important variation for classification with CNNs. Let y and p(z) be
discrete probabilities : yi ∈ [0,1], ∑ yj = 1 ; pi = exp zi

∑n
j=1

exp zj
∈ (0,1). Consider

the Kullback-Leibler divergence (which is convex)

J(W ,b) = − ∑
(x,y)∈D

(log p(f (x)), y) ≥ 0.
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What is the stability of the result ?

- Biggio et al : 2013
- Example from Franceshi et al : 2021.

- Madry et al : Towards deep learning models resistant to adversarial
attacks, in 6th International Conference on Learning Representations, 2018.

- Nota Bene : l1 norm probably better to analyze tables of pixels ≈ images.
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A question is :

Can we certify with SciML= Scientific Machine Learning these

functions/techniques/algorithms/. . . ,
with critical applications in mind ?

The emerging discipline needs much more on mathematical stability of
NN functions.

Related ML key words : predictibility, robust IA, control of generalization
error, reproductibility, adversarial networks, explainibility, . . .
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Model problem

● Assume that f is produce by ML. Consider the dynamical system

{ x ′(t) = f (x(t)),
x(0) = x0

What can we say about the stability of solutions of the ODE ?

● Our model problem is then to :
Ô⇒ Evaluate the Lipschitz constant L

∣f (x) − f (y)∣ ≤ L∣x − y ∣, ∀x , y ∈ Rn.
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Setting of the problem

● Take f ∶ Ra0 → Ra`+1

f = f` ○ S` ○ f`−1 ○ S`−1 ○ ⋅ ⋅ ⋅ ○ S1 ○ f0
The regularity is

f ∈ Lip(Ra0)a`+1 ⊂ C 0(Ra0)a`+1 .

Rademacher’s Theorem : the gradient is

∇f (x) =W`D`(x)W`−1D`−1(x) . . .D1(x)W0.

A subtlety : use the Murat-Trombetti Theorem (2003) to write down the
chain rule formula.

● Take a vectorial norm, for example ∥x∥lp(Ra) = (∑a
i=1 ∣xi ∣p)1/p.

The induced norm for matrices is M ∈ Mab(R) = Ra×b is

∥M∥ = ∥M∥lp(Mab(R)) = max
x≠0

∥Mx∥lp(Ra)

∥x∥lp(Rb)
. (2)

● Our goal is to obtain sharp upper bounds on

L = sup
x∈Ra0

∥∇f (x)∥
lp(Ma`+1,a0

(R)) = (∥∇f ∥
lp(Ma`+1,a0

(R)))
L∞(Ra0 )

.
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Previous results (all in L2 norms as far we
understand)

● Everywhere. One has L ≤ K⋆ where K⋆ = ∏`r=0 ∥Wr∥.

● Szegedy et al (2013). On has L ≤ K ≤ K⋆ where

K = max
D∈D

∥W`D`W`−1D`−1 . . .D1W0∥,

Note immediately the complexity 2a0+a1+⋅⋅⋅+a` = Π`r=02ar .

● Virmaux-Scaman (2019). Find upper bound on K with SVD
decomposition. The complexity reduces to ∑`r=0 2ar .

● Combettes-Pesquet (2020). Define W(t,s) =Wt−1Wt−2 . . .Ws+1Ws . Then
K ≤ K1 ≤ K⋆ where

K1 =
1

2`
∑

1≤r1<r2<⋅⋅⋅<rn≤`
∥W(`+1,rn)∥∥W(rn,rn−1)∥ . . . ∥W(r2,r1)∥∥W(r1,0)∥.

The complexity is 2` ≪∑`r=0 2ar ≪ Π`r=02ar .
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Simple proof of C.P.

Define Zr = 2Dr − Ir = diag(±1) so that Dr =
1

2
(Ir + Zr).

Define Zr = {Zr} and Z = Z` × ⋅ ⋅ ⋅ × Z1.

K = max
D∈D

∥W`D`W`−1D`−1 . . .D1W0∥

= max
Z∈Z

∥W` (
1

2
(I` + Z`))W`−1 (

1

2
(I`−1 + Z`−1)) . . .(

1

2
(I1 + Z1))W0∥

≤ 1

2`
max
Z∈Z

∑
1≤r1<r2<⋅⋅⋅<rn≤`

∥W(`+1,rn)ZrnW(rn,rn−1) . . .W(r2,r1)Zr1W(r1,0)∥

≤ 1

2`
max
Z∈Z

∑
1≤r1<r2<⋅⋅⋅<rn≤`

∥W(`+1,rn)∥∥Zrn∥∥W(rn,rn−1)∥ . . . ∥W(r2,r1)∥∥Zr1∥∥W(r1,0)∥

≤ 1

2`
∑

1≤r1<r2<⋅⋅⋅<rn≤`
∥W(`+1,rn)∥∥W(rn,rn−1)∥ . . . ∥W(r2,r1)∥∥W(r1,0)∥

= K1 ≤ K⋆.

”Trivially”, one also K ≤ K⋆.
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A first new bound

It is well known that
∥A∥1 = max1≤j≤n∑m

i=1 ∣Aij ∣ and ∥A∥∞ = max1≤i≤m∑n
j=1 ∣Aij ∣.

Definition

Given a matrix A ∈ Mm,n(R), denote Aabs ∈ Mm,n(R) the matrix such that

(Aabs)ij = ∣Aij ∣, ∀i , j .

One obtains
∥A∥1 = ∥Aabs∥1 and ∥A∥∞ = ∥Aabs∥∞ (not true for l2-based norms).

Theorem
One has the bound K ≤ K3 where

K3 = ∥W abs
` W abs

`−1 . . .W
abs
0 ∥1,∞.
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A second new bound

Combine with the Combettes-Pesquet trick

K4 =
1

2`
∑

1≤r1<r2<⋅⋅⋅<rn≤`
∥W abs

(`+1,rn) . . .W
abs
(r2,r1)W

abs
(r1,0)∥1,∞.

Theorem
One has the bounds K ≤ K4 ≤ K1.

2024 p. 13 / 26



Introduction

Lipschitz
stability

Extension to
CNN

Summary of these bounds

Here we use l1 and l∞ norms

L ≤ K ≤ K4 ≤ min (K1,K3) ≤ max (K1,K3) ≤ K⋆.
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Approximation of x2

g(x) = {
2x , x ∈ [0,0.5)
2(1 − x), x ∈ [0.5,1]

, gr(x) = g ○ g ○ ⋅ ⋅ ⋅ ○ g ○ g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r times

.

Converging series : Takagi (1902), Yarostky (2017), Devore et al, D., . . .

x2 = x −
∞
∑
r=0

gr(x)
4r

.
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Graphical representation of the truncated network x −∑3
r=0

gr (x)
4r

.
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Illustration : x ↦ x − x2

two layers three layers

Clearly ∥x2 − (x −∑p
r=1

1
4r
gr(x))∥L∞(0,1) ≤ ∑p+1≤n

1
4r
= 1

3×4p
.

Width N = 3, depth p : accuracy is ε = O(4−p), for a cost
Cost = O(3 × p) ≈ C ∣ log ε∣.

Theorem (Yarostky 2017)

There exists a NN approximating all bounded functions ∈W n,∞([0,1]d)
with uniform accuracy ε, uniform cost ≈ log 1/ε and at most ≈ ε−d/n log 1/ε
computational units.
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Results and optimality of K4

Bounds depending on the ReLU representation of g .

` L K∗ K1 K2 K3 K4

1 1.5 3.0 2.0 1.5 2.0 1.5

2 1.75 9.0 3.53125 3.64531 3.0 1.75

3 1.875 33.0 6.92187 6.45925 4.0 1.875

4 1.93875 129.0 14.42877 12.45882 5.0 1.93875

5 1.96875 513.0 30.75637 24.68184 6.0 1.96875

6 1.984375 2049.0 66.00227 49.24501 7.0 1.984375
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A test for T (x , y) = xy

A new formula with strong connexion with FEM : consider the function

Λ = (Λ1,Λ2) ∶ R2 → R2

A=(1,1)B

C D

EFG=(-1,-1)

H

I

Λ1 = ϕα − ϕβ + ϕγ − ϕδ
Λ2 = ϕD − ϕA + ϕB − ϕC + ϕF − ϕE − ϕG + ϕH − ϕI ,
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Formula

One can check the formula where e0 ∈ P1
FEM

T = e0 +
1

4
T ○ ΛÔ⇒ T = ∑

n≥0

1

4n
e0 ○ Λ ○ ⋅ ⋅ ⋅ ○ Λ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.

It reveals the power of composition.
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Results

Lipschitz bounds for networks approximating the function xy .

Remark : the formula is an alternative to the multiplyer function in the
influental contribution Yarotsky 2017.
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Matrices with random weights (from C.P.)

Take W3 ∈ M3,6(R), W2 ∈ M6,10(R) and W1 ∈ M10,8(R). Their entries are
i.i.d. realizations of the normal distribution N(0,1).

f = f3 ○ R ○ f2 ○ R ○ f1, R = ReLU.

Statistic K/K∗ K1/K∗ K2/K∗ K3/K∗ K4/K∗
Maximum 0.2772 0.5786 0.6789 0.8023 0.4608
Average 0.1422 0.4539 0.3256 0.5461 0.2875

Minimum 0.0595 0.3703 0.1597 0.2897 0.1604
Standard deviation 0.0343 0.0350 0.0685 0.0813 0.0483

Statistics over 1000 realizations.

Once again, K4 is the best one.
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Convolutional neural networks

CNNs are central for classification, as exemplified by the MNIST dataset

g = T`+1○g` ○T` ○ g`−1 ○T`−1 ○ ⋅ ⋅ ⋅ ○T1 ○ g0.

For simplification we neutralize the last soft-max function T`+1 = I .

g = g` ○T` ○ g`−1 ○T`−1 ○ ⋅ ⋅ ⋅ ○T1 ○ g0.

Normalization is that gr have ability to change the dimension and that the
Tr do not change the dimension.

As before, a linear function g lin
i ∶ Rai → Rai+1 is written

g lin
i (x) =Wix + bi .
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Convolutional layers

● A convolutional layer gcon
i ∶ Rai → Rai+1

gconv
i (x) = K conv

i ∗ x + bi .

Since convolution operators are linear operators, there exist a matrix
Wi =W conv

i such that
gconv
i (x) =Wix + bi ,

Example : take a vertical vector

x = [x11 x12 x13 x21 x22 x23 x31 x32 x33]
T ∈ R9. (3)

A re-indexation allows to write

x =
⎡⎢⎢⎢⎢⎢⎣

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤⎥⎥⎥⎥⎥⎦
(4)

● The normalization convention allows to represent the non-linear
max-pool function as a gi

gi(x) = (max(x11, x12, x21, x22), . . . ) ∈ R4.

2024 p. 23 / 26



Introduction

Lipschitz
stability

Extension to
CNN

Regularity of CNNs

g ∈ Lip(Ra0)a`+1 ⊂ C 0(Ra0)a`+1 .

All previous results are generalized mutatis mutandi.
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A test with CNN (MNIST, LeCun et al)

Training with regularization (0.01).
The accuracy on the test set is always between 95% and 97%.

Once again, K4 is the best one.

2024 p. 25 / 26



Introduction

Lipschitz
stability

Extension to
CNN

Conclusion

Stability of NNs is a fundamental topic, at least for the development
of SciML and potential applications to certification.

Linear algebra has something to say about the Lipschitz stability of
NNs. So far K4 is systematically the best estimate.

Open question 1 : find better bounds through spectral analysis.

Open question 2 : use such bounds to regularize training.

Open question 3 : use such bounds for applications such as

”learning real problems” and ”solving PDEs”.

D.-Pintore : Certified computable Lipschitz bounds for Deep Neural Networks.
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